Using YACC or Bison

Prof. James L. Frankel
Harvard University

Version of 5:29 PM 19-Sep-2023
Copyright © 2023, 2022, 2020, 2016, 2015 James L. Frankel. All rights reserved.



File Format (1 of 4)

Extension is .y

<declarations>

%%

<translation rules>

%%

<supporting C functions>

Anything in the <declarations> sections that is delimited by a line
with "%{" to a line with "%}" is copied directly to the output C file

All functions used in <translation rules> should be declared in the
<declarations> section and defined in the <supporting C functions>
section



File Format (2 of 4)

* Each line in the <declarations> section (other than those between
"%{" and "%}") has the format:
%start <nonTerminal>
%token <listOfNames>
%left <listOfTerminals>
%right <listOfTerminals>
%nonassoc <listOfTerminals>

* Precedence of tokens is in the order of declaration — lowest
precedence first

* All tokens on the same line have the same precedence and
associativity



File Format (3 of 4)

Translation rules:
<head> : <body,> { <semantic action >}
| <body,> { <semantic action,> }

| <body > { <semantic action > }

A single quoted character is the terminal symbol
SS is the attribute associated with the head

Si is the attribute associated with the ith grammar symbol of the
body (either terminal or non-terminal)

— jis one origin (i.e., 1 is the first body grammar symbol)



File Format (4 of 4)

* Unquoted strings of letters and digits not declared to be tokens
are taken to be non-terminals

* Copying the value is the default action for productions with a
single grammar symbol in the body (5SS = S1;)



Dealing with Ambiguity in YACC/Bison

* A reduce/reduce conflict is resolved by choosing the conflicting
production listed first in the YACC/Bison specification

* A shift/reduce conflict is resolved in favor of shift



Associativity and Precedence

Associativity can be assigned to terminals by using %left, %right,
and %nonassoc

As stated above, the precedence associated with tokens is
determined by their declaration order — lowest precedence first

Normally the precedence of a production is the same as that of its
rightmost terminal

This can be changed by appending
%prec <terminal>
to a production body

— This sets the precedence of that production to the same precedence as
<terminal>



Including the Lexer

* Specify
#tinclude "lex.yy.c"

in the third part of the YACC/Bison input file to include the
lexer built by Lex

* Declare yylex in the declarations section using:
int yylex(void);



Errors Detected by YACC/Bison

The function yyerror is called by YACC/Bison whenever an error
is detected when your resulting YACC/Bison file (i.e., your
parser) is executing

A single parameter is passed to yyerror of the type:
char *

That string will contain a description of the error detected by
YACC/Bison

Declare yyerror in the declarations section using:
void yyerror(char *s);



Removing warnings emitted by gcc

* When building the YACC/Bison & Lex/Flex project with gcc
switches —pedantic and -Wall, you may see warnings for:

‘yyunput’ defined but not used [-Wunused-function]

‘input’ defined but not used [-Wunused-function]

* These can be removed by adding the following lines to your lex
file in the declarations section:
%option nounput

%option noinput



Compiling a YACC/Bison file

flex lexer.lex (for flex)

lex lexer.lex (for lex)

yacc parser.y (for yacc)

bison -Werror=midrule-values parser.y (for bison)

gcc -pedantic -Wall y.tab.c -ly -Ifl -o parser (for yacc)

gcc -pedantic -Wall parser.tab.c -ly -Ifl -o parser (for bison)

— -Werror=midrule-values means to issue an error for midrule values that are set, but not used
— -pedantic means to issue all warnings demanded by Standard C

— -Wall means to issue many warnings that some users consider questionable

— vy.tab.cis the output of YACC; parser.tab.c is the output of Bison

— -ly means to link with the YACC/Bison libraries

— -Ifl means to link with the flex libraries (on some systems, -Il may be needed to link with lex
libraries)

— -0 is used to specify the name of the executable file



Examining Shift/Reduce and Reduce/Reduce
Conflicts

* |[nvoking YACC or Bison with the -v switch will cause a y.output
file to be created

* The y.output file will contain a human-readable description of
what the parser will do in each of its states

* Examining the y.output file will show how YACC or Bison is
finding and resolving shift/reduce and reduce/reduce conflicts



	Slide 1: Using YACC or Bison
	Slide 2: File Format (1 of 4)
	Slide 3: File Format (2 of 4)
	Slide 4: File Format (3 of 4)
	Slide 5: File Format (4 of 4)
	Slide 6: Dealing with Ambiguity in YACC/Bison
	Slide 7: Associativity and Precedence
	Slide 8: Including the Lexer
	Slide 9: Errors Detected by YACC/Bison
	Slide 10: Removing warnings emitted by gcc
	Slide 11: Compiling a YACC/Bison file
	Slide 12: Examining Shift/Reduce and Reduce/Reduce Conflicts

