
Using YACC or Bison

Prof. James L. Frankel
Harvard University

Version of 5:29 PM 19-Sep-2023
Copyright © 2023, 2022, 2020, 2016, 2015 James L. Frankel. All rights reserved.

File Format (1 of 4)

• Extension is .y
• <declarations>

%%
<translation rules>
%%
<supporting C functions>

• Anything in the <declarations> sections that is delimited by a line
with "%{" to a line with "%}" is copied directly to the output C file

• All functions used in <translation rules> should be declared in the
<declarations> section and defined in the <supporting C functions>
section

2

File Format (2 of 4)

• Each line in the <declarations> section (other than those between
"%{" and "%}") has the format:
 %start <nonTerminal>
 %token <listOfNames>
 %left <listOfTerminals>
 %right <listOfTerminals>
 %nonassoc <listOfTerminals>

• Precedence of tokens is in the order of declaration – lowest
precedence first

• All tokens on the same line have the same precedence and
associativity

3

File Format (3 of 4)

• Translation rules:
<head> : <body1> { <semantic action1> }
 | <body2> { <semantic action2> }
 …
 | <bodyn> { <semantic actionn> }
 ;

• A single quoted character is the terminal symbol
• $$ is the attribute associated with the head
• $i is the attribute associated with the ith grammar symbol of the

body (either terminal or non-terminal)
– i is one origin (i.e., 1 is the first body grammar symbol)

4

File Format (4 of 4)

• Unquoted strings of letters and digits not declared to be tokens
are taken to be non-terminals

• Copying the value is the default action for productions with a
single grammar symbol in the body ($$ = $1;)

5

Dealing with Ambiguity in YACC/Bison

• A reduce/reduce conflict is resolved by choosing the conflicting
production listed first in the YACC/Bison specification

• A shift/reduce conflict is resolved in favor of shift

6

Associativity and Precedence

• Associativity can be assigned to terminals by using %left, %right,
and %nonassoc

• As stated above, the precedence associated with tokens is
determined by their declaration order – lowest precedence first

• Normally the precedence of a production is the same as that of its
rightmost terminal

• This can be changed by appending
 %prec <terminal>
to a production body
– This sets the precedence of that production to the same precedence as

<terminal>

7

Including the Lexer

• Specify
 #include "lex.yy.c"
in the third part of the YACC/Bison input file to include the
lexer built by Lex

• Declare yylex in the declarations section using:
 int yylex(void);

8

Errors Detected by YACC/Bison

• The function yyerror is called by YACC/Bison whenever an error
is detected when your resulting YACC/Bison file (i.e., your
parser) is executing

• A single parameter is passed to yyerror of the type:
 char *

• That string will contain a description of the error detected by
YACC/Bison

• Declare yyerror in the declarations section using:
 void yyerror(char *s);

9

Removing warnings emitted by gcc

• When building the YACC/Bison & Lex/Flex project with gcc
switches –pedantic and –Wall, you may see warnings for:
 ‘yyunput’ defined but not used [-Wunused-function]

 ‘input’ defined but not used [-Wunused-function]

• These can be removed by adding the following lines to your lex
file in the declarations section:
 %option nounput

 %option noinput

10

Compiling a YACC/Bison file

• flex lexer.lex (for flex)
lex lexer.lex (for lex)

• yacc parser.y (for yacc)
bison -Werror=midrule-values parser.y (for bison)

• gcc -pedantic -Wall y.tab.c -ly -lfl -o parser (for yacc)
gcc -pedantic -Wall parser.tab.c -ly -lfl -o parser (for bison)
– -Werror=midrule-values means to issue an error for midrule values that are set, but not used
– -pedantic means to issue all warnings demanded by Standard C
– -Wall means to issue many warnings that some users consider questionable
– y.tab.c is the output of YACC; parser.tab.c is the output of Bison
– -ly means to link with the YACC/Bison libraries
– -lfl means to link with the flex libraries (on some systems, -ll may be needed to link with lex

libraries)
– -o is used to specify the name of the executable file

11

Examining Shift/Reduce and Reduce/Reduce
Conflicts

• Invoking YACC or Bison with the -v switch will cause a y.output
file to be created

• The y.output file will contain a human-readable description of
what the parser will do in each of its states

• Examining the y.output file will show how YACC or Bison is
finding and resolving shift/reduce and reduce/reduce conflicts

12

	Slide 1: Using YACC or Bison
	Slide 2: File Format (1 of 4)
	Slide 3: File Format (2 of 4)
	Slide 4: File Format (3 of 4)
	Slide 5: File Format (4 of 4)
	Slide 6: Dealing with Ambiguity in YACC/Bison
	Slide 7: Associativity and Precedence
	Slide 8: Including the Lexer
	Slide 9: Errors Detected by YACC/Bison
	Slide 10: Removing warnings emitted by gcc
	Slide 11: Compiling a YACC/Bison file
	Slide 12: Examining Shift/Reduce and Reduce/Reduce Conflicts

